
It is easy to force a weather forecaster to work out of context—simply move
him or her to some new locale. It takes at least one full seasonal cycle for
forecasters to reacquire expertise. Worse, move a forecaster from the Nor-
thern Hemisphere to the Southern Hemisphere. Major things change.
Low-pressure systems spiral clockwise, not counterclockwise. Effects of
ocean currents, seasonal variations, and effects of land masses change ev-
erything. Any knowledge of trends that the forecaster had relied on are now
utterly useless.

In the studies we report in this chapter, we did something like this, but
the switch involved making us, as cognitive systems engineers, work out of
context. Work on forecaster reasoning with which we are familiar (e.g.,
Hoffman, 1991), including on our own research, has involved the study of
forecasters in the U.S. Navy and U.S. National Weather Service. We think
we have some ideas about how forecasters think (see chap. 15, this volume),
but are we sure? How does what we think we know transfer to, say, forecast-
ing in Australia? Or does it transfer? What if we were to advise building
some new tool, only to learn that it does not help forecasters in regions
other than the continental United States?

Weather forecasting is a complex process. The supporting information is
multidimensional, distributed, and often uncertain. It includes both “raw”
observations (e.g., current temperature, winds, pressure, clouds, precipita-
tion, radar returns, satellite pictures, etc.) and analytic weather models that
predict future weather conditions at various scales of space and time. The
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information that the weather forecaster uses is often downloaded from ex-
ternal Web sites. Local weather organizations use (or build) support tools
for displaying downloaded data and images and for building and displaying
their own forecasts.

To optimize these tools, consideration must be given to the user-tool-
task triad that is central to the principles of human-centered computing
(HCC) (Hoffman, Coffey, Ford, & Bradshaw, 2001; Hoffman, Hayes, Ford,
& Hancock, 2002). These principles require the designer to build tool that
facilitate the task that the user does and accommodate human perceptual,
cognitive, and motor functioning. How does the designer incorporate the
user-tool-task triad of HCC into this complex and specialized domain? How
does the designer gain enough knowledge of the users’ tasks and processes
to provide useful assistance? And how does the designer disentangle the ef-
fects of task, training, teamwork arrangements, and basic human cognition
from those of the design of the tools?

The traditional way human factors engineers approach this problem is to
perform a task analyses to determine how people operate in a specific do-
main on a specific task. Cognitive Task Analysis (CTA) is a set of methods
that takes into account the perception (i.e., vision), cognition (i.e., deci-
sion making), and motor actions (i.e., mouse movements) needed to ac-
complish a task. In this chapter, we build on CTA methods by suggesting
that comparative cognitive task analysis (C2TA) can help solve the afore-
mentioned problems. C2TA is based on replication studies conducted in
different environments. Replication is a basic principle of the scientific
method, but usually replication aims at duplicating the original conditions.
Comparative studies are also a common scientific practice. Within the HCC
literature, comparative studies usually employ a traditional experimental
design to ask such questions as which device or design is faster (Haas,
1989), more efficient (Haas, 1989), and/or lowers workload (Kellogg &
Mueller, 1993). However, CTA is often an exploratory research strategy
that focuses on process rather than final performance (Sanderson & Fisch-
er, 1994). C2TA draws on all these traditions, applying elements of replica-
tion and comparative methods to the exploratory process approach of
CTA. Because it derives data from more than one environment, C2TA pro-
vides insight into interface design that single-site studies and individual
CTA methods cannot.

There are many versions of task analysis ranging from time-and-motion
study (Gilbreth & Gilbreth, 1917) to GOMS (goals, operators, methods,
selection rules) analysis (Card, Moran, & Newell, 1983), to ecological inter-
face design (EID) (Vicente & Rasmussen, 1992). Each is best suited to par-
ticular aspects of design problems. For example, GOMS analysis is a key-
stroke-level process for describing human–computer interactions (e.g.,
mouse and keyboard interactions). EID focuses on how the operator inter-
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acts with indicators of physical functioning such as in a power plant or man-
ufacturing control room. CTA is especially useful in situations where the
task is heavily dependent on human interpretation and integration of dy-
namic and highly uncertain data (Schraagen, Chipman, & Shalin, 2000).

Weather forecasters typically deal with large amounts of data over time
and space (Hoffman, 1991). Additionally, the information they examine is
uncertain on several dimensions (i.e., the predictive weather models that
are run may be based on a small number of data points in some areas—like
in the middle of the ocean—which necessitates interpolating from the cur-
rent data, which may cause the final output to be more uncertain). The
need for expertise at interpreting the weather prediction models, the dy-
namic nature of weather, and the uncertainty in the weather models makes
weather forecasting an excellent candidate for CTA.

However, most of the data analyzed by CTA methods come from a single
source (i.e., most CTA studies have been performed on a single system
and/or a small group of people). Although the single approach is adequate
in many situations, it may not be as generalizable as it could be. That is, any
problems might be traced to the interaction between the person and the
system. You may discover, for example, that a specific pointing device is not
very effective on a particular system, but you do not know if that is a limita-
tion of the pointing device or the way people (in general) think, or the way
people in a particular organization think; you only know that the combina-
tion of people and pointing device on the task you are examining is not very
effective. By examining different tools (i.e., different types of pointing de-
vices on similar tasks), you can start to dissociate the effects of cognition
and those of the tool.

For example, the pen, the typewriter, and the computer keyboard are all
tools that can be used for writing a document. The writing process consists
of planning, composing, editing, and production (writing/typing). The
quantity and sequence of these processes is differentially supported by the
three tools. The computer supports longer compositions, however, the
writer plans longer before editing with a pen (Haas, 1989). This may be be-
cause editing with a pen includes crossing out, rewriting, cutting pages
apart and taping them back together, arrows for inserts, and so on, and
then repeating the production process (rewriting) on clean paper. Editing
on a typewriter uses similar cross-out, cut, glue, and retype processes. With
both of these tools, the rewrite (production) process is effortful. However,
writers using a computer edit more as they write and new versions do not re-
quire redoing the physical production (Kellogg & Mueller, 1993).

The data for the two analyses reported here were collected during two
studies in two different locations, a United States Navy (USN) Meteorology
and Oceanography (METOC) center in California and a Royal Australian
Navy (RAN) METOC facility. These studies employed the methods of cog-
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nitive field research and quasi-naturalistic observation in what Hoffman
and Deffenbacher (1993) termed a “laboratory field” study. The studies
were part of a project to provide improved tools for Navy weather forecast-
ing. Only by understanding current practices and forecasting tools could
improvements be suggested that would make the process more efficient
while retaining accuracy levels. (Because accuracy data are regarded as sen-
sitive, they are not reported here.) The two studies allowed us to map the
information usage of decision makers to information visualization tools,
and to compare the USN and RAN forecasters in order to distinguish be-
tween effects that are dictated by the tools and training of these specialists
and those due to basic human cognition.

The intent of this chapter is to introduce a new approach to answering
the questions in the previous paragraph. We need not report a full analysis
of the data, but we do present sample results. We first briefly describe the
data collection at the two sites. Then we review the results of the C2TA and
show how suggestions for the design or redesign of tools flow from the
C2TA results. More detailed results from both studies can be found in
Kirschenbaum (2002) and Trafton et al. (2000)

THE TWO STUDIES

Study 1: U.S. Navy, 2000

Study 1 took place in San Diego, California, at a Naval meteorological and
oceanographic facility. We set up a simulated METOC center with com-
puter access to the tools that the forecasters typically use. Most of the
weather information came from meteorological Web sites including mili-
tary, nonmilitary government, and university sites.

Three pairs of participants consisting of a forecaster and a technician
took part in the study. Each pair developed a forecast and prepared a fore-
cast briefing for a (pretend) air strike to take place 12 hours in the future
on Whidbey Island, Washington. All actions were videotaped and the par-
ticipants were requested to “talk aloud” so as to produce a verbal protocol.

Study 2: Royal Australian Navy, 2001

The second study was a naturalistic observation of RAN forecasters working
at a Weather and Oceanography Centre at an airbase in eastern Australia.
Like their USN counterparts, they were forecasting for 12-, 24-, and 72-hour
intervals for air operations. They prepared forecasts and forecast briefings,
and used computer-based tools. As with the USN forecasters, most of the
forecasting information came from meteorological Web sites. Also as in our
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study of the USN forecasters, they were videotaped and instructed to “talk
aloud” to produce verbal protocols.

By retaining the task (forecasting) and moving to another group of prac-
titioners with different tools (workstations, software), training, and team-
work practices, we might disentangle the effects due to human cognition,
versus those due to the organizations, versus those due to the tools used—
thereby permitting inferences about how to better support the common
forecasting tasks for both groups.

RESULTS

The data were analyzed at two levels of detail. The first is a high-level de-
scription of the stages of weather forecasting. The second is a detailed de-
scription of the information-processing procedures used during each stage.

Information Use

Comparative CTA can tell two kinds of stories. Similarities in classes of infor-
mation usage that are independent of the tools, training, and teamwork
patterns imply basic processes of human cognition. In contrast, we can im-
pute differences in information usage patterns as being due to the impact of
differences in tools, training, and teamwork. To find either, we must code
the verbal protocols to capture the way the forecasters use information. To
analyze these data we selected usage encodings that capture what the fore-
caster did with the information. In other reports, we have examined the for-
mat of the information (text, graph, animation, etc.) or the form of the in-
formation (qualitative or quantitative) (Kirschenbaum, 2002; Trafton et al.,
2000).

The major encoding categories for cognitive activities that we used are
described in Table 14.1. Note that, in terms of expertise required and cog-
nitive effort, there is a clear ordering from simplest to most demanding: Re-
cord �Extract � Compare � Derive.

The transcripts were encoded using the Table 14.1 categories, and the
results for the USN and RAN forecasters were compared. Overall, the re-
sults indicated a strong similarity between USN and RAN information us-
age—the basic processes are the same. There were no methods that were
used by one group but not by the other. However, the order, tools used,
and relative frequency with which these methods were used did show signif-
icant differences in some areas. These areas are indications that the tools
differentially support the tasks. They are of interest for C2AT and for the in-
formation they provide about opportunities to improve the toolset.
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Figure 14.1 indicates differences in the details of how USN and RAN
forecasters accomplish their task, using the resources at hand and within
their own specific environments (weather, training, and manning). We
concentrate on differences during the central tasks of developing and veri-
fying the forecast. (There are no differences in the relative frequency of re-
cord actions even though specific tools and the pattern of tasks did differ.)

Two observations stand out. The RAN forecasters appear to spend the
same proportion of time in extracting, comparing, and deriving information
whereas the USN forecasters spend significantly more of their time extract-
ing information, �2(3) = 31.31, p � .001. In contrast, RAN forecasters spend
virtually as much time comparing as extracting data. Thus, compared to the
USN forecasters, the RAN forecasters spent a significantly larger propor-
tion of their time engaged in comparing information, �2(1) = 7.28, p � .01.

C2TA reveals the differences between the two groups. However, the ana-
lyst must find the reasons for these differences. Candidate causes include
task, tool, and training differences. In this case, the goal is the same, pre-
dicting weather for naval aviation operations in the 12+-hour time frame.
Though training differs between the groups, tool differences appear to be
the more likely cause. For example, the RAN forecasters have better sup-
port for comparisons because they either use adjacent monitors or adjacent
windows on the same monitor. Thus, they can see a satellite or radar pic-
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TABLE 14.1
Categories of Cognitive Work Used in the Analysis

Action Definition Example

Extract To read information from any visi-
ble source. This occurs when a
forecaster examines a visualization
and extracts some sort of local or
global features that are explicitly
represented in the visualization.

“Looks like PVA over the area.”

Compare To use two or more sources and
comparing them on any data.

“Radar shows precipitation, but I
can’t really see anything on the
satellite picture.”

Derive To combine information that is
available in the visualizations with
the forecaster’s own knowledge,
so as to make inferences and
come to a conclusion that differ
from what is in the visible source.

“I think that’s probably a little fast
due to the fact that I don’t think
the models taking into account
the topography of the area.”

Record To write down or copy information
for reporting to users. It need not
be the final form.

“This is a good picture right here,
I’ll take this. . . . Just crop this pic-
ture a little bit.”

Note. The examples come from USN transcripts.



ture simultaneously or can examine the outputs of two or more computer
forecasting models side by side on the same monitor, as shown in Figure
14.2. In contrast, the USN forecasters must extract information from one
data source, and then either compare it to information shown at some
other workstation, or store it in memory or on paper, and then make com-
parisons from memory. With the RAN dual view (either on the same or ad-
jacent monitors) the forecaster can make direct comparisons. The process of
extraction is an integral part of the process while the storage burden is
greatly reduced. In Figure 14.2, the forecaster is comparing the outputs of
two computer models displayed side by side on the same monitor. Other
comparisons observed were comparisons of predictions for the same com-
puter model across time and comparisons of the computer model predic-
tion for current time and current observations (e.g., a satellite image on an
adjacent monitor).

Sequences

Another observation from Figure 14.1 is that both groups spend a consider-
able portion of their time recording information for use in their forecasts.
Further insight into this process can be achieved by examining the se-
quence of processes. Table 14.2 shows the probability of going from one
process to another for a USN and a RAN forecaster. For example, given that
the RAN forecaster is currently extracting data, the probability of his next
action being comparing, deriving, or recording are p = .11, .44, and .44, respec-
tively. This transition table emphasizes the importance of the two poles, ex-
tract and record. These are the most common transition points for both the
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USN and RAN forecaster. Of the three-node transitions, the most common
cycles for both were either

extract � record � extract

or

record � extract � record.

For RAN,
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TABLE 14.2
Representative Transition Probabilities

From \ To Extract Compare Derive Record

RAN
Extract .00 .11 .44 .44
Compare .40 .00 .20 .40
Derive .31 .08 .00 .62
Record .48 .24 .29 .00

USN
Extract .08 .25 .42 .25
Compare .33 .00 .33 .33
Derive .50 .13 .00 .38
Record .60 .00 .20 .20

FIG. 14.2. Forecaster comparing the outputs of two computer models, us-
ing screen sectoring.



extract � derive � record

was also common. Transitions between compare and derive were noticeably
fewer than those involving the poles.

As with the frequency data, sequence data provide insight into how tools
do (or do not) support the cognitive tasks that make up weather forecast-
ing. Design implications from the sequence data suggest the most effective
places to automate. For example, as extract � record sequences are com-
mon, a semiautomated tool might allow the forecaster who is extracting in-
formation to record the selected data at the press of a button and without
having to change screens. This would speed the recording process, elimi-
nate accidental recording errors (typos, memory errors, etc.) and reduce
the need to cycle between two tools.

IMPLICATIONS

C2TA is only one of the inputs to inform human-centered tool design. It is,
however, necessary because without it, the tools would likely not meet the
needs of the user, even if the designer were knowledgeable about the users’
tasks. In contrast, with a “traditional” CTA, we could have observed the pro-
cesses of extraction, comparison, deriving, and recording during the develop-
ment of a weather forecast, and studied forecasters’ cycle between develop-
ing their forecast (extract, compare, derive) and recording data. We would not
have known whether these processes and cycles are common to other fore-
casting environments. Furthermore, we would not have learned the impor-
tant role that the supporting tools play in the comparison process.

The cognitive systems engineer and the system developers and designers
must work together to exploit these observations to guide the development
of better tools. C2TA is only the first step but one that can inform and guide
design toward making improvements where they are most needed. Our
results suggest a need for better tools to further facilitate the comparison
process, thus affirming an hypothesis about workstation design from tradi-
tional task analyses (Hoffman, 1991) that forecasters have to be able com-
pare multiple data types at a glance. New display approaches and products
are coming along to further support forecasting. For instance, it is now pos-
sible now to compare the outputs of the differing computer forecasting
models. It is possible to superimpose computer model outputs over satellite
pictures for current model comparisons.

These are just examples of the kinds of conclusions that can be derived
from C2TA and have contributed to the momentum to develop better tools
to help forecasters. With a single data set, the designer cannot know if the
observed behavior is due to some demand characteristic of the tool set or to
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some facet of human cognition. With the addition of a second data set, the
designer can separate the two and is thus free to develop better ways to sup-
port common cognitive processes with new tools.
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